Toggling between gamma-frequency activity and suppression of cell assemblies
نویسندگان
چکیده
Gamma (30-80 Hz) rhythms in hippocampus and neocortex resulting from the interaction of excitatory and inhibitory cells (E- and I-cells), called Pyramidal-Interneuronal Network Gamma (PING), require that the I-cells respond to the E-cells, but don't fire on their own. In idealized models, there is a sharp boundary between a parameter regime where the I-cells have weak-enough drive for PING, and one where they have so much drive that they fire without being prompted by the E-cells. In the latter regime, they often de-synchronize and suppress the E-cells; the boundary was therefore called the "suppression boundary" by Börgers and Kopell (2005). The model I-cells used in the earlier work by Börgers and Kopell have a "type 1" phase response, i.e., excitatory input always advances them. However, fast-spiking inhibitory basket cells often have a "type 2" phase response: Excitatory input arriving soon after they fire delays them. We study the effect of the phase response type on the suppression transition, under the additional assumption that the I-cells are kept synchronous by gap junctions. When many E-cells participate on a given cycle, the resulting excitation advances the I-cells on the next cycle if their phase response is of type 1, and this can result in suppression of more E-cells on the next cycle. Therefore, strong E-cell spike volleys tend to be followed by weaker ones, and vice versa. This often results in erratic fluctuations in the strengths of the E-cell spike volleys. When the phase response of the I-cells is of type 2, the opposite happens: strong E-cell spike volleys delay the inhibition on the next cycle, therefore tend to be followed by yet stronger ones. The strengths of the E-cell spike volleys don't oscillate, and there is a nearly abrupt transition from PING to ING (a rhythm involving I-cells only).
منابع مشابه
Repetition suppression of induced gamma band responses is eliminated by task switching.
The formation of cortical object representations requires the activation of cell assemblies, correlated by induced oscillatory bursts of activity > 20 Hz (induced gamma band responses; iGBRs). One marker of the functional dynamics within such cell assemblies is the suppression of iGBRs elicited by repeated stimuli. This effect is commonly interpreted as a signature of 'sharpening' processes wit...
متن کاملNeuronal assembly dynamics in the beta1 frequency range permits short-term memory.
Cell assemblies have long been thought to be associated with brain rhythms, notably the gamma rhythm. Here, we use a computational model to show that the beta1 frequency band, as found in rat association cortex, has properties complementary to the gamma band for the creation and manipulation of cell assemblies. We focus on the ability of the beta1 rhythm to respond differently to familiar and n...
متن کاملDoes High Frequency Transcutaneous Electrical Nerve Stimulation (TENS) Affect EEG Gamma Band Activity?
Background: Transcutaneous electrical nerve stimulation (TENS) is a noninvasive, inexpensive and safe analgesic technique used for relieving acute and chronic pain. However, despite all these advantages, there has been very little research into the therapeutic effects of TENS on brain activity. To the best of our knowledge, there is no evidence on the effect of high frequency TENS on the gamma ...
متن کاملMemory formation by neuronal synchronization.
Cognitive functions not only depend on the localization of neural activity, but also on the precise temporal pattern of activity in neural assemblies. Synchronization of action potential discharges provides a link between large-scale EEG recordings and cellular plasticity mechanisms. Here, we focus on the role of neuronal synchronization in different frequency domains for the subsequent stages ...
متن کاملOriganum vulgare leaf extract protects mice bone marrow cells against ionizing radiation
Objective: Ionizing radiation produces free radicals which induce DNA damage and cell death. Origanum vulgare leaf extract (OVLE) is a natural compound and its capability of scavenging free radicals and its antioxidant activity have been demonstrated by many researchers. In this study, using micronucleus assay, radioprotective effect of OVLE against clastogenic and cytotoxic effect of gamma irr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013